Introduction and Experiments on Transmitter Localization with TDOA

Stefan Scholl, DC9ST

Software Defined Radio Academy, Friedrichshafen, Germany, 07/2017
Basic Idea of TDOA

- TDOA = Time-Difference-of-Arrival (Multilateration)
- use several receivers and
- analyze time **difference** of received signal
- apply geometry to determine position of transmitter
Multilateration: Basics

Simplified Situation: Only 2 Receivers

- TDOA = 0 ns
- Difference in distance = 0 m
- "TX has equal distance to RX1 and RX2"
- All possible TX positions: straight line
Multilateration: Basics

Simplified Situation: Only 2 Receivers

Receiver 1

TDOA = 6.7 us (2000 m)
„TX is 2000 m closer to RX1 than to RX2“
Possible TX positions: hyperbola

Receiver 2

TDOA = -6.7 us (-2000 m)
„TX is 2000 m farther away from RX1 than RX2“
Possible TX positions: hyperbola

=> 3 Receivers required to solve ambiguities
Multilateration: Basics

Full system with 3 receivers

Receiver 1
Receiver 2
Receiver 3

hyperbola for RX 1 & 2
hyperbola for RX 1 & 3
hyperbola for RX 2 & 3

unique transmitter location

Note: Synchronization of RXes required!
Delay Measurement

• How to measure delay between two signals?

• Correlation function

\[\text{Corr}(\tau) = \sum_{t=0}^{N-1} s_1(t)s_2(t + \tau) \]

\(s_1(t), s_2(t): \) received signals by RX1 and 2

• „Tries every possible delay and records how good the signals match“

• Example:

• Peak -> best match, most likely delay
Resolution Analysis

Resolution of delay measurement ≠ Resolution of localization on map!

TDOAs here: in steps of 600 m

=> good accuracy in area surrounded by receivers
Summary on Basics

• Theory:
 • TDOA analyzes time differences of signal arrival
 • requires 3 synchronized receivers
 • difference /delay measurement with correlation
 • good accuracy in area surrounded by RXes

NEXT:

• Praxis:
 • How to build a real system
 • Receiver setup, synchronization and connection
 • Signal processing
 • Results
Low Cost TDOA System: Overview

• Goal: Localize transmitter in the city of Kaiserslautern, Germany, with simple system

• 3 Simple Receivers
 • Raspberry PI + RTL-Stick
 • simple antenna
 • antenna indoor
 • correct frequency with „kalibrate-rtl“ (using GSM channel)
 • newer versions of RTL-SDR: better frequency stability

• RTL-SDR Properties
 • receives any signals from 70 MHz to >1 GHz
 • bandwidth 2 MHz
 • achievable resolution for delay measurement
 2 MHz sampling => 500 ns * 3e8 m/s = 150 m
Low Cost TDOA System: Receiver Placement

- standard indoor antenna
- suboptimal placement in city
 -> very simple setup

expected area of good accuracy
Low Cost TDOA System: Infrastructure

Master PC
- for **RX control** and (offline) signal processing

High Data Rate Challenge:
- RTL SDR: 8 Bit IQ, 2 MHz
- => 16 Bit x 2 MHz = 32 Mbit/s
- our available DSL upload: max. 1 Mbit/s
- 1s recording takes approx. 1/2 min to copy

Internet / DSL connection (via SSH)
- Receiver 1
- Receiver 2
- Receiver 3
- Master triggers reception at all RX
- RX send back received data
Low Cost TDOA System: Synchronization

Reference Transmitter for RX Sync
- DAB+ „Rotenberg“
- mast height: 120 m
- 217 MHz, 2 kW
- 1.54 MHz bandwidth
- excellent correlation!

-> very good for synchronization
Low Cost TDOA System: Synchronization

Reference signal for synchronization	Unknown signal to localize

Reception at each receiver

Synchronization:
1. start reception at RXes roughly the same point in time
2. align received signals along reference signal (+ known delay to reference TX)
 -> Received signals get synchronized, not the RXes themselves!

Is seamless switching possible with the RTL-SDR?
librtdsdr (c lib to talk to RTL-SDR) crashed, when modified to switch frequencies during reception

Yes! Solution:
use branch async-rearrangements, https://github.com/mutability/librtlsdr/tree/async-rearrangements
Seamless switching works perfectly fine:
Correlation of Real Signals

Real signals received by 2 RTL-SDRs at different locations

- Quality of correlation depends on
 - Noise / SNR
 - Signal length
 - Signal bandwidth
 - Multi-Path Propagation
 - Signal content!

- Correlation may have:
 - multiple ambiguous peaks
 - no distinct peaks
Improvements On Correlation

- any peak could be the true delay!
- Analyse absolute delay values:
 delay between peaks: here 61,000 samples = 9150 km,
 max possible TDOA is distance between RXes, here a few kilometers!
Signal Processing

- Matlab script running on Master PC
- consider receptions pairwise to create a hyperbola

1. receive signals & send to master
2. synchronize RXs:
 - interpolate reference signals (optional)
 - calculate correlation (dphase or abs)
 - discard invalid peaks of correlation function
 - use measured delay to synchronize
3. measure unknown signals
 - interpolate signals (optional)
 - correlation (dphase or abs)
 - discard invalid peaks of correlation function
 - determine TDOA in samples and distance
4. calculate hyperbola using geometry
5. create a html / javascript file for google maps to display results
Results: 70cm DMR Repeater

- DMR Repeater of Univ. of Kaiserslautern
- 439.4 MHz
- 12.5 kHz bandwidth, 4 FSK modulation
Results: mobile telephony

- 922.8 MHz
- GSM/UMTS/LTE ??

Stars mark all basestations
Results: FM broadcasting

- 96.9 MHz
- FM broadcast station, „Antenne Kaiserslautern“

Difficult localization: Tx is located outside of the receiver area. TDOA = Direction finding.
Results: unknown signal

- 391 MHz
- BW estimate: ~15 kHz

Post office & train station, are nearby (?)
Summary

- TDOA system can be built with little effort
- Simple RTL-SDR receivers are sufficient
- Remarkable results even with highly suboptimal setup
Further information and project files available:

Email: dc9st@panoradio-sdr.de
Correlation in Time Domain

Signals aligned according to correlation peak (DAB+ recorded by 2 RTL-SDRs)

Correlation of the two signals above
Correlation for IQ signals

- Correlation function introduced for real signals
- RTL-SDR delivers I/Q outputs
- treat I/Q value as complex value: $(I+j*Q)$
- options for IQ correlation:
 - complex correlation
 - real correlation with $\text{abs}(I+j*Q)$
 - real correlation with phase difference of $(I+j*Q)$